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Abstract: 
Conducting high-quality research in early onset scoliosis (EOS) is challenging, requiring trained biostatisticians who 
develop theoretical and statistical methods to analyze data in support of evidence-based decision-making. Epidemiol-
ogists provide empirical confirmation of disease processes, identifying factors that affect prognosis to guide the pro-
cess toward clinical relevancy. Within each step in the study process, there are important principles that investigators 
can apply to improve the quality of research in EOS.   

One must ask an important research question that tests a focused, testable hypothesis. From this, create a study design 
with appropriate patient cohorts according to established inclusion/exclusion criteria. Specify the variables hypothe-
sized to impact dependent measures of outcomes that reflect disease pathophysiology, treatment, and/or prevention.  
The data is to be analyzed with applicable statistical tests based upon power calculations with an estimate of the extent 
of variation in the dependent variables. Finally, we interpret results established on appropriately powered statistical 
tests in support/rejection of the hypothesis. 

These points, as relevant to early onset scoliosis (EOS) research, can be illustrated through an example of a retrospec-
tive de novo study identifying risk factors for increased mortality and decreased health related quality of life (HRQoL) 
in EOS patients with cerebral palsy (CP) undergoing spine surgery.  

Key Concepts: 
• There are many unanswered questions in the management of early onset scoliosis.
• Impactful clinical research in this field and in all of pediatric orthopaedics requires a team of clinicians,

epidemiologists, and biostatisticians, each contributing in their areas of expertise.
• Determining a testable hypothesis is the first step of careful study design with clearly defined independent and

dependent variables.
• A variety of study designs can be considered, each with their own potential bias, confounding effects, chance,

and risk for reverse causation.
• A basic understanding of p-values, accuracy, precision, and relative risk is important to consider when

determining if statistical findings have clinical importance.
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Introduction:  
Before You Start 
Early onset scoliosis (EOS) is a challenging field 
with many questions that remain unanswered. To 
create a high-quality research project to answer 
these, first ask a question that is worth answer-
ing: Will the answer change the way you prac-
tice? How will the knowledge gained advance the 
treatment of EOS? Avoid derivative, incremental, 
non-impactful retrospective research studies. 
Think about how you will answer the question. 
Develop a preliminary hypothesis and research plan that 
answers the question. “Brainstorm” your ideas with col-
leagues and mentors, seek critical feedback—revise and 
rethink your approach. 

Causal Inference from  
Observed Associations 
The primary mission of clinical research is to provide 
evidence of causality. For example, does a novel surgical 
technique lead to better clinical outcomes compared to 
traditional methods or does a specific patient characteris-
tic increase the risk of postoperative complications? To 
answer these questions requires an understanding of cau-
sality; however, simply identifying an association be-
tween a patient characteristic (independent variable) and 
an outcome (dependent variable) does not establish cau-
sality. To understand the actual effect of an intervention 
on an outcome for a specific patient cohort, one would 
theoretically need to prospectively intervene on study 
participants today, follow them for a specific amount of 
time, and measure clinical outcomes, then on the same 
cohort, put them in a time machine, bring them back to 
the beginning of the study and NOT intervene (i.e., un-
treated or natural history), follow them for the same 
amount of time, and measure the same clinical outcomes 
(Figure 1). Since the cohort is identical, the only differ-
ence affecting the future clinical outcome (dependent 
variable) is whether the patient was exposed or not to the 
intervention (independent variable). While this hypothet-
ical experiment establishes true causation, it is impossi-
ble to perform. In the real-world causation is inferred 

from observed associations (causal inference). Valida-
tion of causation must be proven based on pathophysio-
logical mechanisms and additional objective clinical evi-
dence.1  

In casual inference, we compare the likelihood of an out-
come in the exposed group to the likelihood of an out-
come in the unexposed group; the groups are presumed 
to be interchangeable with respect to all patient-related 
characteristics that might affect clinical outcomes.2,3 To 
ensure that causal inference is the sole plausible explana-
tion for an observed association, alternative explanations 
for that association must be systematically eliminated, 
including selection or information bias, confounding, re-
verse causation, and chance. Selection bias is when 

Figure 1. Hypothetical model for establishing causation 

Figure 2. Likelihood of being retained in the study leading to 
selection bias 

True Result 

Biased Result 
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subjects meeting inclusion criteria are enrolled into a 
study but may not fully reflect the characteristics and 
outcomes of the entire targeted patient population. Con-
sider, for example, if patients unexposed to a treatment 
with a good outcome are retained until the study is com-
plete (Figure 2: N=50N=50), while patients with less 
favorable outcomes drop out (Figure 2: N=50N=10)). 
A less obvious example is how preoperative health status 
can unintentionally introduce selection bias. Patients 
who are healthier preoperatively are more likely to have 
better postoperative outcomes. Medical clearance to help 
providers identify children least likely to suffer serious 
postoperative complications and most likely to have im-
proved surgical results inadvertently introduces selection 
bias by encouraging surgeons to operate on the least sick 
patients, even though it is the sickest patients who are 
most in need of an intervention. Information bias results 
from misclassifying treatment exposure or outcomes 
during the collection, recall, and processing of infor-
mation (Figure 3).  

Confounding occurs when an unaccounted, extraneous 
factor is associated with both the treatment exposure and 
the outcome being investigated (Figure 4). Randomized 
controlled trial (RCT) study design removes confound-
ing by randomly assigning subjects to the exposed vs. 
unexposed treatment groups, thereby eliminating any 
systematic association between potential confounders 
and treatment exposure. While causation is implied if an 
exposure precedes an outcome, in reversed causation, 
that temporal order is reversed. Reverse causation can 
also explain an observed association. Chance is the like-
lihood that random error produced an association be-
tween an exposure and an outcome. In most clinical 
studies, the probability value (p-value) is used to evalu-
ate the likelihood that an observed association occurred 
by random chance. 

1. Develop Testable Hypotheses  
Avoid collecting “data” and taking a “shotgun” ap-
proach that surveys the data for associations between 
variables. Ask a research question that tests a hypothe-
sis or formulate a hypothesis that answers a research 
question. Clinical studies should be hypothesis driven. 

The hypothesis forms the conceptual foundation of 
your investigation; it needs to be focused and testable 
by including independent and dependent (outcome) 
variables that can be evaluated objectively and 

Figure 3. Misclassification of outcome leading to information bias 

Figure 4. Directed acyclic graph (DAG)4 demonstrating con-
founding effect and removal by RCT 

True Result 

Biased Result 
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compared statistically. The PICOT format organizes 
proposed research questions into focused hypotheses 
and facilitates the development of specific aims and 
methods that test hypotheses:5,6 

P: Population: specify study subjects—inclusion/ex-
clusion criteria 
I: Intervention/Exposure: exposure to intervention or 
independent risk factor to be evaluated. One treatment 
or risk factor should be evaluated for each hypothesis.  
C: Comparison: alternative intervention or unex-
posed control group 
O: Outcome: dependent variables—specific outcomes 
of interest (clinical biomarkers, imaging spine/thoracic 
anatomy, mortality, HRQoL)  
T: Time: time duration for the monitored outcome to 
occur 
For poorly understood events, exploratory research ques-
tions can be posed such as “What patient and/or surgical 
risk factors predict an unplanned return to the operating 
room (UPROR)?” Univariable analyses can be per-
formed to investigate associations between specific risk 
factors and UPROR. Once risk factors are identified, the 
PICOT format can be used to formulate testable hypoth-
esis and specific aims.

2. Study Design  

The study design should establish causal inference as the 
sole plausible explanation for an association between in-
dependent (intervention/comparison) and dependent 
(outcome) variables, while eliminating alternative expla-
nations for the observed association.2,7–9 Selecting an ap-
propriate study design should take into consideration the 
ethics of subject accrual and intervention assignment, the 
quality of measured outcomes, available resources, 
budget, and allocated time. 

Experimental vs. Observational Studies  

In experimental studies, investigators prove causal infer-
ence for an association between an intervention and a 
clinical outcome by prospectively assigning eligible sub-
jects to different interventions and measuring the same 
outcomes (clinical biomarkers, image based anatomy, 
HRQoL) afterwards for the exposed and unexposed 
groups.2,7–9 In an observational study, patient selection 
for an intervention is not actively managed—subjects 
meeting inclusion criteria are exposed (or not) to an in-
tervention independently. Subsequent outcomes are 
measured identically for the exposed and unexposed 
groups, thereby allowing researchers to make inferences 
as to the likelihood of causation between the  

EOS Example  

P = EOS patients with CP who have major scoliosis with Cobb angle >40° 
I = Surgery for their spinal deformity 
C: No Surgery for their spinal deformity 
O: Mortality and HRQoL  
T: At 10-year postoperative assessment 
Hypothesis 1: For EOS CP patients with scoliosis >40° (P), those treated surgically to correct their spinal deformity (I) 
have decreased risk of mortality (O) at 10-year postoperative follow-up (T) compared to those patients who did not have 
surgical correction of their scoliosis (C). 
• Specific Aim 1: Compare mortality (O) at 10-year follow-up (T) in EOS CP patients with scoliosis >40° (P) treated 

surgically (I) compared to those EOS CP patients with 40° scoliosis who did not have spine surgery (C). 
Hypothesis 2: For EOS CP patients with scoliosis >40°(P), those treated surgically to correct their spinal deformity (I) 
have decreased risk of deterioration in HRQoL (O) at 10-year postoperative follow-up compared to those EOS CP patients 
who did not have surgical correction of their scoliosis (C) 
• Specific Aim 2: Compare HRQoL (O) at 10-year follow-up (T) in EOS CP patients with scoliosis >40°(P) treated 

surgically (I) compared those EOS CP patients with 40° scoliosis who did not have spine surgery (C). 
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intervention/exposure and ensuing outcomes.2,7–9 Obser-
vational studies can be prospective or retrospective and 
can include case-control cohorts. 

1) Randomized Control Study 

A randomized clinical trial (RCT) is an experimental re-
search study in which eligible subjects are prospectively 
allocated randomly to exposed or unexposed groups by 
chance.2,7–11 This design is superior to other research de-
signs because the random assignment of suitable patients 
to either the exposed or unexposed groups minimizes the 
risk of selection bias and mitigates risk that unknown 
confounding factors may bias or contaminate subse-
quent outcomes (Figure 4). Blinding observers evalu-
ating outcomes as to the assignment of subjects to the 
exposed vs. the unexposed intervention groups re-
duces the possibility of measurement bias. Since the 
allocation of patients to the exposed vs. unexposed 
groups occurs before outcomes are measured, reverse 
causation is eliminated as an explanation for observed 
associations. The CONSORT (CONsolidated Stand-
ards of Reporting Trials) 2010 guidelines are helpful 
for understanding the methodology and reporting of 
RCTs.12,13 Computer programs facilitate the random 
assignment of patients to exposed/unexposed cohorts 
(http://random.org/). In EOS, parallel group random-
ized trials13 or randomized crossover trials12 can be 
useful.  

2) Cohort Studies 

Cohort studies can be prospective or retrospective (Fig-
ure 5). PICOT should be defined prior to conducting the 
study: eligible subjects (P) are either prospectively as-
signed to the exposed (I) vs. unexposed (C) intervention 
groups or retrospectively identified as having been ex-
posed or unexposed to an intervention. Subsequently 
both groups are monitored over time (T) for develop-
ment of specific outcomes (O). The proportion of ex-
posed vs. unexposed subjects who exhibit these out-
comes are calculated and compared. In prospective co-
hort studies, investigators allocate suitable patients to be 
exposed or unexposed to an intervention (Figure 6). Sub-
jects are monitored for specific outcomes, which may 

take substantial time to develop. In retrospective cohort 
studies, the outcome has already developed (Figure 6) at 
the time of patient evaluation, shortening the time dura-
tion of the study. Combined prospective and retrospec-
tive cohort studies are where investigators use existing 
data to retrospectively identify appropriate subjects of 
interest based on exposure status but subsequently fol-
lowed prospectively to monitor outcomes. Compared to 
RCTs, cohort studies are more susceptible to selection 
bias and information bias. Investigators may uninten-
tionally assign qualified patients to a particular exposure 
group based on factors that affect outcomes. For longitu-
dinal studies, the main concern is differential loss of fol-
low-up, which can contribute to selection bias.3 Since 

Figure 6. Prospective and retrospective cohort study and case-control 
study in relation to the enrollment of study subject  

Figure 5. Cohort study 
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retrospective cohort studies are planned after the data is 
collected compared to prospective cohort studies, retro-
spective cohort studies are more vulnerable to bias in-
duced by unmeasured confounders as well as infor-
mation bias introduced by misclassification of exposure 
status or outcome status. Sensitivity analysis should be 
conducted to assess these biases.3 Multi-center registries 
are especially useful for aggregating large numbers of el-
igible patients who were exposed or not to an interven-
tion and consequently monitored over time for the devel-
opment of outcomes that reveal the safety or efficacy of 
an intervention. The limitation of using large registry da-
tasets is that although the data was collected contempo-
raneously, the data was not explicitly collected to pro-
spectively test a specific hypothesis. The data set aggre-
gates a myriad of patients from multiple sites, exhibiting 
a large age range, disparate diagnoses, and co-morbidi-
ties who may have been followed inconsistently over 
time for measured outcome variables. Selection bias due 
to missing values and inconsistent follow-up are espe-
cially problematic (Figure 2). Selection bias is intro-
duced if missing outcome metrics and/or loss to follow-
up was not random, influenced by the intervention 
and/or outcome status. For example, if patients exposed 
to a specific procedure develop unfavorable outcomes 
which dissuade them from pursuing 2-year follow-up, 
these poor outcome cases will be excluded from the 
analysis and be underrepresented in the registry. For 
studies utilizing registry data, conducting a sensitivity 
analysis that evaluates all eligible patients initially ex-
posed to a particular intervention must be compared to 
those patients who completed follow-up for which out-
come data are available. If the distributions are similar, 
selection bias is less likely to be present; however, if the 
distributions are different, selection bias limits confi-
dence in study results.14,15  

3) Case-Control Study 

 Case-control studies are the converse of cohort studies: 
eligible subjects are segregated according to a specific 
outcome (cases) vs. subjects without that outcome (con-
trols). The proportion of exposed subjects comprising 
the cases vs. control groups establishes the association 

between the exposure and the outcome (Figure 7). Case-
control studies offer logistical efficiency over cohort 
studies when the outcome is rare: cohort studies require 
a large number of exposed subjects to be evaluated so as 
to attain a sufficient number of cases, whereas in a case-
control study design, cases are proactively identified. 
Case-control studies are beneficial when the outcome 
has a long induction and latency period. While case-con-
trol study designs offer efficiency and optimize re-
sources, establishing causality between a rare outcome 
and an exposure is imprecise since only odds ratios are 
calculated. The risk or rate ratio of the outcome to the 
exposure cannot be estimated directly. Odds ratio ap-
proximate risk in cases if the proportion of exposed sub-
jects is low (< 20%). Cases may be over-sampled if the 
proportion of subjects exhibiting an outcome is greater 
than that in the underlying population of eligible sub-
jects. Case-control studies are susceptible to selection 
and information bias as well as being prone to confound-
ing since unmeasured confounders cannot be easily ad-
justed for. Therefore, case-control studies should be uti-
lized only when an outcome is rare and resources are 
limited. In EOS, a case-control study design can be uti-
lized for exploratory analyses to formulate hypotheses 
in preparation for conducting a retrospective cohort 
study to obtain more accurate results.  

3. Power and Sample Size Estimation 

Power analysis or sample size estimation needs to be 
performed in order to determine how many study 

Figure 7. Case-control study 
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patients are required to answer the research questions 
and test hypotheses. This is performed a priori before 
conducting the study. An underpowered test result does 
not mean there is “no statistical difference” just because 
the p value is >0.05! The number of patients needed de-
pends on four factors (reference 55, 56):  

1.  The precision and variance of the measurements for 
the independent and dependent variables. The coeffi-
cient of variation (relative standard deviation) is a sta-
tistical measure of the dispersion of data points around 
the mean, calculated by the standard deviation divided 
by the mean. Confidence intervals (CI) represent un-
certainty in a sample variable—i.e., the range of values 
for a variable, bounded above and below its mean cal-
culated from the standard deviation multiplied by the 
Z value, which is determined by the selected confi-
dence interval (typically 95%) and the number of data 
values for that variable. The more subjects or data 
points evaluated, the more precise the estimate of true 
population value (i.e., narrower CI).   

2.  The effect size –i.e., the magnitude of the difference 
that we are trying to detect. Meaningful statistical 
analyses should detect medically important differences 
(reference 55). To detect small differences (effect size) 
between comparison groups requires precise estimates 
with small variance and therefore, large numbers of 
subjects.  

3.  The acceptance of possible error. Conventionally, 
in clinical research, we choose < 0.05 for a type I error 
and < 0.20 for a type II error. When we try to deter-
mine whether two comparison groups are the same 
(accepting the null hypothesis) or if they are different 
(accepting the alternative hypothesis), type I error (ac-
cepting the null incorrectly) and type II (rejecting the 
null incorrectly) can occur. The lower the type 2 error, 
the higher the power of a test. To avoid invalid conclu-
sions, by convention the minimum threshold of power 
is ≥ 80%, which means that there is an 80% chance of 
detecting whether the specified effect exists (and in 
turn 20% probability of being wrong—type 2 error).  

4.  The type of statistical test used for the analysis af-
fects how the sample size and power are calculated. 
For example, a non-parametric test (e.g., Kruskal-Wal-
lis test) will need more patients than a parametric test 
(e.g., independent t test). Programs such as STATA, 
PASS, or R are used to calculate the appropriate sam-
ple size and power estimates. These programs require 
specification of at least three of these four factors.  

Power analysis is also used to check and validate the re-
sults and findings from retrospective studies. For exam-
ple, if we specify the clinically meaningful difference, 
sample size, and significance level (type I error), we can 
calculate the power of an experiment to check whether 
type 2 error probability is within an acceptable range. 
Power curves demonstrate the inter-relationships among 
effect size, sample size, and the power of a statistical test 
at a given significance level. 

4. Selecting Study Patients  

 Using the PICOT format to develop specific aims and 
testable hypotheses requires identifying the target popu-
lation (P). Detailed inclusion and exclusion criteria allow 
specification of the patient population to be examined.18 
Inclusion criteria should consider patient demographics, 
gender, ethnicity, socioeconomic status, physical capa-
bilities, diagnoses, medical co-morbidities, habits, and 
medication/drug exposure. To avoid potential ethical di-
lemmas or problems with data analysis, well-defined ex-
clusion criteria need to be outlined. Even though patients 
may have missing data, data availability should not be an 
exclusion criterion as this can introduce selection bias. 
Sensitivity analysis can be performed to determine if pa-
tients with missing data are different from patients with 
complete datasets. It is important to recognize that sub-
jects may be too young or cognitively impaired to pro-
vide informed consent for enrollment into a research 
study; thus, surrogates (parents, guardians) will need to 
be involved. 
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5. Study Measures  

1)  Exposure  
In formulating the hypothesis, the exposure is the inde-
pendent variable that is related to an outcome measure.19 
The exposure can be an intervention, shared factor of inter-
est, unexposed control, or alternative intervention. Expo-
sure factors can be continuous or categorical variables. For 
instance, if the patient’s age during the surgery (continu-
ous) was the exposure factor, the risk of an outcome de-
creases/increases by X% as age increases by 1 year. If there 
is a specific age which affects the risk of an outcome, the 
continuous variable, age, can be discretized at that thresh-
old, e.g., > 6 years old or ≤ 6 years old (Figure 8).  

2) Outcome  

Outcome measures are dependent variables; they can be 
continuous or categorical. Outcome measures determine 
the type of statistical analyses to be performed (Figure 
9). A contingency table is used to summarize data from 
an experimental or observational study with two or more 
categorical variables. The χ2 chi-squared test of inde-
pendence, Fisher exact as well as regression analyses are 
used to determine the association between categorical 
variables. The null hypothesis is that the two categorical 
variables are independent, while the alternative hypothe-
sis is that the two variables are related. For binary out-
comes where the categorical outcome is counted (e.g., 
number of complications) a Poisson regression is used. 
When the outcome is continuous, t-tests, Analysis of 
Variance (ANOVA) and regression analyses are applied.  

3) Confounders 

 When examining associations observed between an ex-
posure and an outcome, before assuming a causal infer-
ence, it is important to consider confounders. The appar-
ent association between an exposure and an outcome 
may fail to reflect the effect of confounders and collider 
bias, an alternative pathway relating the exposure to the 
outcome (Figure 10).20,21 To minimize the effect of con-
founders and collider bias during the analysis, it is nec-
essary to collect data on colliders and confounders and  

adjust for them using a DAG model.22 (DAGitty is a free 
website to create DAGs and identify which variables to 
control for.)  

4) Effect Modifiers 

When the magnitude of the effect of an exposure on an 
outcome depends on a third variable, this third variable 
is called an effect modifier (Figure 11). The association 
strength, demonstrated by the risk ratio (RR), can differ 
for each component of the effect modifier (e.g., EOS eti-
ology). The magnitudes and directions of the associated 
risk ratio can be variable.23 It is important to differentiate 
effect modifiers from confounders. Adjusting for con-
founders in statistical models assumes that the magni-
tude of the effect of an exposure on an outcome is simi-
lar across groups. For instance, if EOS etiology is treated 
as a confounder and adjusted for, the correction will be 
the same for all etiologies. However, in EOS studies, the 
magnitude of the effect of an exposure on an outcome is 
different across etiologies. To differentiate confounders 
from effect modifiers, requires comparing effect 
measures, such as risk ratio or rate ratio stratified by the 
candidate variable. If the effect measures are substan-
tially different, it is an effect modifier, whereas if they 
are similar, it is a confounder. (Breslow Day Test can be 
used to test the null hypothesis that the effect measures 
for the strata are all equal – i.e., a confounder, if p < 
0.05, and the null hypothesis is rejected, the variable is a 
modifier).  

  

Figure 8. Age threshold 
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5) Mediators 

When a mediator is assumed to be present, the total ef-
fect can be separated into direct and indirect effects (Fig-
ure 12).24,25 A direct effect is defined as the effect of the 
exposure on the outcome when the mediator is absent, 
whereas an indirect effect is defined as the effect of the 
exposure on the outcome, reconciled through the media-
tor. There are traditional and modern approaches to esti-
mate direct and indirect effects.26 Mediation analysis 
strengthens the evidence of a causal inference between 
an exposure and an outcome, to better understand the 
mechanisms of causation to improve the efficacy of in-
terventions. 

6. StatisticL Analyses  
1) Terminology 

Risk: the probability of an outcome = chance of the out-
come of interest developing in study patients over a 
specified time period  

Rate: the number of study patients who develop the out-
come divided by the person-time at risk in a fixed study 
cohort  

Prevalence: the proportion of patients with an outcome 
during a selected time period  

Incidence the proportion of new cases of a disease dur-
ing a designated time period  

Independent variable:  
categorical or continuous? Continues Categorical 

Dependent variable:  
categorical or continuous? 

Continues Categorical Categorical 

Dependent variable:  
categorical or continuous? 

Regression 

(e.g., logistic, relative 
risk) 

Regression 

(e.g., linear) 

More than two 

Chi Square, Fisher Ex-
act Regression 

(e.g., logistic, relative 
risk) 

T-test 

Regression 

(e.g., linear) 

How many groups  
being compared? 

Two 

Continues 

ANOVA 

Regression 

(e.g., linear) 

Figure 9. Choosing statistical tests 
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Comparisons of these outcome measures between the 
exposed and unexposed groups are conducted by matrix 
operations such as ratio and difference. 

2) Description of Cohorts 

General characteristics of study patients are reported in a 
table that exposes potential threats to the internal (e.g., 
confounding, bias) and external validity (e.g., generali-
zation) of the study.28 Rows identify patient characteris-
tics and variables of interests (including potential con-
founders). Columns stratified by exposure provide in-
sights to both internal and external validity.28 For exam-
ple, when there is a significant difference in a variable 
(e.g., age) between the exposed and the unexposed 
group, confounders may be suspected.29  

Descriptive statistics: categorical variables are reported 
using n (%) and continuous variables are reported using 
mean (standard deviation) or median (25th-75th percentile 
or minimum-maximum).29 Radiographic descriptions of 
pathoanatomy: deviation from the center to the right or 
left is usually reported as positive and negative values, 
respectively (e.g., coronal balance 5 cm to the right of 
center sacral line is coded as +5 while 5 cm to the left is 
coded as -5). Use the mean of absolute values to indicate 
the average magnitude of musculoskeletal deformity. 
Avoid using means to describe the distribution of cate-
gorical descriptions of the study cohort (e.g., GMFCS 
levels: I, II, III, IV, V).  

When examining categorical variables, Chi-squared 
(when all cells have n≥5) or Fisher exact (when one or 
more cells have n <5) test can be used. For normally dis-
tributed continuous variables, t-tests can be used to com-
pare means. However, when the normality assumption is 
violated, nonparametric tests such as the Mann Whitney U 
test, the Wilcoxon Signed Rank Test, or the Kruskal Wal-
lis test must be used.30,31 To test whether the variable is 
normally distributed, the Kolmogorov-Smirnov test, the 
Anderson-Darling test, and the Shapiro-Wilk test can be 
used, where statistical significance (e.g., p<0.05) denotes 
that the data does not follow a normal distribution.32,33 

There has been controversy regarding the inclusion of  
p-values in the table to assess the potential influence of 
confounders as being statistically significant. As this is 
often misinterpreted,34–36 instead of identifying con-
founders based only on p-values, investigators should-
consider the clinical soundness of the relationship be-
tween the exposure and the candidate confounder and 
whether the magnitude of the observed differences for 
suspected confounders is meaningful.29,34,35,37  

3) Main Effect Analyses 

 The analysis investigating the association between the 
exposure and the outcome is called the main effect anal-
ysis. The type of statistical analyses depends on the out-
come (categorical vs. continuous) and observation time 
(Figure 13).38,39 Logistic regression can only be used 
when individual patients have equal follow-up time. Rel-
ative risk regression is preferred over logistic regression 
if the outcome is common (e.g., prevalence of the out-
come is > 10%).40–42 It is important to be aware that spe-
cific statistical analyses have specific assumptions that 
must be fulfilled for the analysis to be applicable and to 

Figure 10. Collider bias illustrated for CP EOS 

Figure 11. Effect modification 
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perform assumption testing and make appropriate modi-
fications when violations are identified.49–51 For instance, 
linear regression analysis requires the association be-
tween the exposure and the outcome to be linear, obser-
vations to be independent of one another and the values 
of the independent and dependent variables to be nor-
mally distributed, and homoscedastic (i.e., the variance 
of residuals is the same for any value of the exposure). 
Logistic and relative risk regressions require the inde-
pendency assumption, while the Cox-proportional haz-
ard requires both the independency and proportional haz-
ard assumptions.43–48 

 After selecting the appropriate statistical test, the analy-
sis is performed using an unadjusted model where the 
exposure is the independent 
variable, and the outcome is 
the dependent variable. Upon 
completion of this initial 
analysis, note the signifi-
cance and value of the re-
gression coefficient (beta) 
for the exposure variable. 
Subsequently, an adjusted 
model is developed entering 
confounders in addition to 
the exposure (independent 
variable) and the outcomes 
(dependent variables). If there is more than a 10% differ-
ence in the regression coefficients for the exposure vari-
able in the unadjusted and adjusted models, there are 
confounders that must be considered as represented in 
the adjusted model.38,39 

7. Interpreting Study Results  

The causal inference as the sole plausible explanation for 
the observed association should be described here. P-val-
ues used to assess the statistical significance of these as-
sociations are often misinterpreted. 29,35,37,52–54 P-value of 
≤ 0.05 does not necessarily indicate a meaningful differ-
ence or the presence of associations, and p-values of  
> 0.05 does not indicate a lack of difference between in-
dependent and dependent variables.35,37,52–54 Greenland et 

al. describes 25 misinterpretations of p-values and statis-
tical significance.53 When we interpret the main effect to 

Figure 13. Example of type of analysis 

EOS CP example for possible confounders and effect modifiers 

•  Exposure measures: Spine sur-
gery (coded as 1); no spine sur-
gery (coded as 0) 
•  Outcome measures: Mortality 
within 10 years postoperatively 
for surgical patients and 10 years 
after reaching scoliosis >40° 
(death coded 1; alive coded 0) 
•  Example of possible confound-
ers: age, major coronal curve, 
comorbidities (Figure 13) 
•  Example of possible effect 
modifiers: Gross Motor Function 
Classification System 
(GMFCS).27 

Figure 12. Mediation 
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prove or disprove the study hypothesis, instead of mak-
ing the judgement based on p-values, we should consider 
if the magnitude of differences or association observed is 
clinically meaningful.29,35,37,52–54  

One of the most important responsibilities of investiga-
tors is to identify and report the limitations of a study 
from the clinical, methodological and epidemiological 
perspective. The potential of alternative explanations for 
the observed associations and likelihood of contamina-
tion by selection bias, information bias, confounding ef-
fects, chance, and reverse causation need to be carefully 
investigated and discussed.   

Conclusion 
 Performing high-quality research requires biostatistical 
and epidemiologic understanding of not only strict re-
search methodology but also the question you are 
searching for an answer to. In an area such as EOS, 
working with colleagues with research expertise can help 
ensure not only that appropriate research principles are 
followed but that the results of the study will lead to 
practice-changing answers for our patients.  
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